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Abstract

An original model and code for 3-D radiation of anisotropically scattering gray media is developed where radiative transfer equation
(RTE) is solved by finite volume method (FVM) and scattering phase function (SPF) is defined by Mie Equations (ME). To the authors’
best knowledge this methodology was not developed before. Missing the benchmark, another new 3-D model and code, which solve the
same problems, based on a combination of zone method (ZM) and Monte Carlo method (MC), as a solution of RTE, is developed. Here
SPF is also calculated by Mie Equations. The conception ZM + MC is numerically expensive and is used and recommended only as a
benchmark. The 3-D rectangular enclosure and the spherical geometry of particles are considered. The both models are applied: (i) to an
isotropic and to four anisotropic scattering cases previously used in literature for 2-D cases and (ii) to solid particles of several various
coals and of a fly ash. The agreement between the predictions obtained by these two different numerical methods for coals and ash is very
good. The effects of scattering albedo and of wall reflectivity on the radiative heat flux are presented. It was found that the developed 3-D
model, where FVM was coupled with ME, is reliable and accurate. The methodology is also suitable for extension towards: (i) mixture of
non-gray gases with particles and (ii) incorporation in computational fluid dynamics.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Radiation transfer within particulate media is important
phenomenon in many scientific fields, processes and equip-
ment. Some of these fields and equipment are: (i) combus-
tion chambers where pulverized coal, char, soot or flay ash
take place, (ii) cement kilns, (iii) fluidized beds, (iv) rockets
with solid propellants, (v) pulsed lasers, (vi) remote sensing,
(vii) optical tomography and (viii) energy emission from a
nuclear explosion. The particles cloud emits, absorbs and
scatters radiation energy where scattering is mainly aniso-
tropic. There is a great interest nowadays in mathematical
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modeling of these phenomena as well as in their implemen-
tation. The developed models and codes are needed to be
applied for the solution of various problems in engineering
and science related to particles radiation.

There have been many publications considering the radi-
ative heat transfer within multi-dimensional particulate
media. Ratzel and Howell [1] used the P-3 spherical har-
monic method for radiative transfer in absorbing, emitting
and scattering media in 2-D rectangular enclosure. They
presented their results for isotropic scattering. Fiveland
[2] considered two-dimensional radiation using S-N dis-
crete ordinate method (DOM) to solve radiative transfer
equation. But he analyzed only the problems with isotropic
scattering. Crosbie and Schrenker [3] solved the integral
equation for radiative transfer in a two-dimensional rectan-
gular enclosure by removing the singularity. They reported
the predictions for isotropically scattering media. Menguc
and Viscanta [4] analyzed radiative transfer in a 3-D
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Nomenclature

a coefficients of discretization equations
A area of control volume faces
b source term in discretization equations
Dl

cx;D
l
cy ;D

l
cz direction cosines integrated over solid angle

control volume DX
E emissive power
êx; êy ; êz unit vectors in x, y, and z directions
fij total view factor or total interchange factor

(TIF)
G average incident radiation
GkGi total interchange area between volume zones k

and i

GkSi total interchange area between volume zone k

and surface zone i

i
ffiffiffiffiffiffiffi
�1
p

i1 non-dimensional polarized intensity
i2 non-dimensional polarized intensity
I intensity
IB blackbody intensity from an opaque wall
Ib blackbody intensity from a medium
Iw intensity at opaque diffuse wall
k absorptive index (imaginary part of the complex

index of refraction)
K absorption coefficient
L number of sub-control angles
L maximal distance of travel
L cube side
m complex index of refraction
n̂ unit outward normal vector
n refractive index (real part of the complex index

of refraction)
n index in infinite series
q heat flux
qw wall heat flux
Qsca scattering efficiency factor
Q�ys non-dimensional net radiative heat flux in y-

direction at the middle of south wall
Q�zr non-dimensional net radiative heat flux in z-

direction at the middle of rear wall
Q�zf non-dimensional net radiative heat flux in z-

direction at the middle of front wall
Q�z non-dimensional net radiative heat flux in z-

direction along the centerline
r particle radius
~r position vector
Ri random number
R(n) cumulative distribution function
s distance traveled by a beam
ŝ angular direction
S source function
SjGi total interchange area between surface zones j

and volume zone i

SjSi total interchange area between surface zones j

and i
V zone volume
x, y, z Cartesian coordinate directions
x particle size parameter
X, Y, Z non-dimensional coordinates, X = x/L, Y = y/

L, Z = z/L

Greek symbols

a scattering angle, notation in Monte Carlo Meth-
od, same as c and w

b extinction coefficient, the angle between plane of
incident beam and plane of scattered beam

c scattering angle designated within Mie theory,
same as w

g polar angle in Monte Carlo Method
Dx, Dy, Dz control volume dimensions in x, y and z

directions, dimensions of the zones in Monte
Carlo method

DV volume of control volume
DX solid angle control angle
e wall emissivity
j absorption coefficient
jp absorption coefficient of particles cloud
k the wavelength of incident radiation
l direction cosine in the x-direction, cosh
q wall reflectivity
h polar angle measured from êz in FVM
h planar angle in Monte Carlo Method
r scattering coefficient or Stefan Boltzmann con-

stant
sx, sy, sz optical coordinates, bx, by and bz respec-

tively
sxL, syL, szL overall optical thicknesses, equal to bL
/ azimuthal (planar) angle measured from êx

U scattering phase function
U(c) scattering phase function for c argument
Ul0l normalized scattering phase function, or average

scattering phase function, or average energy
scattered from solid control angle defined by
direction l0 to solid control angle defined by
direction l

n appropriate variables calculated from cumula-
tive distribution function

w scattering angle, same as c

Superscript
* non-dimensional variables
+ positive direction
� negative direction
0 incident direction
l, l0 angular directions
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Subscripts

b blackbody
e, w, n, s, r, f east, west, north, south, rear and front

neighbors of control volume P
P control volume P

p related to particles
x, y, z coordinate directions
w wall
S sub-control angle

Abbreviations

ADF absorption distribution function
BC boundary condition
CFD computational fluid dynamics
DOM discrete ordinate method
FV finite volume, same as FVM
FVM finite volume method
LBL line-by-line (model)
MC Monte Carlo, same as MCM

MCM Monte Carlo method
ME Mie Equations, same as MT
MT Mie theory, same as ME
MOL method of lines
ODE ordinary differential equation
PDE partial differential equation
PDF probability density function
RTE radiative transfer equation
SLW spectral line-based weighted sum of gray gases

(model)
SNB statistical narrow band (model)
SPF scattering phase function
TIA total interchange area
TIF total interchange factor
2-D two dimensional
3-D three dimensional
WSGGM weighted sum of gray gases model
ZM zone method
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rectangular geometry using the first- and three-order spher-
ical harmonics approximations. They presented the results
for particulate media with anisotropic scattering by taking
gray delta-Eddigton approximation as scattering phase
function. Thynell and Ozisik [5] studied radiation transfer
in rectangular geometries by using finite element method
and their results are for isotropic scattering. From these
five multi-dimensional cases cited above, four cases are
for isotropic scattering and only one [4] for anisotropic
scattering which, as the scattering phase function, has an
approximation valid only for the particular particle param-
eter. Kim and Lee [6] modeled the radiative heat transfer in
2-D rectangular enclosures by using S-N discrete ordinate
method to solve radiative transfer equation. The gray
media in considered geometries absorb, emit and aniso-
tropically scatter radiant energy. The scattering phase func-
tion was defined by Legendre polynomials expansions.
Here the radiative intensity field, average incident radiation
and the radiative heat flux were predicted. In addition the
effects of: anisotropy of the scattering phase functions,
the aspect ratio, the optical thickness, the scattering albedo
and the boundary reflectivity on the radiative transfer were
thoroughly examined. The two-dimensional anisotropic
scattering cases evaluated there were presented then with-
out comparison since there were no published results for
those cases in that time.

A three-dimensional mathematical model for predicting
turbulent flow with combustion and radiative heat transfer
within a furnace has been developed by Trivic [7]. The
model consists of two sections: (1) transport equations that
are nonlinear partial differential equations solved by a
finite difference scheme, and (2) the radiative heat transfer
that was analyzed by the zone method. The Monte Carlo
method was used to evaluate total radiative interchange
in the system between zones. For the determination of
the radiative properties of particles suspended in the com-
bustion gases, the Mie equations were used. The mathe-
matical model was validated against experimental data
collected on two large furnaces: (1) A tangentially pulver-
ized coal fired boiler of 220 MW; (2) an oil fired boiler of
345 MW, with symmetrically positioned burners at the
front and rear wall. The results gave reasonable agreement
between measurements and values predicted by the model.

A study related to the radiation of the mixtures of non-
gray gas and particles in a pulverized-coal-fired boiler was
done by Steward and Trivic [8]. The mathematical model
based on the fundamental equations of motions and energy
transfer, and on the zone method for determining radiative
heat transfer, was developed for an operating 220 MW
pulverized-coal-fired boiler. The scattering phase function,
used for anisotropically scattering, was evaluated by
Mie theory. The model is capable of predicting velocity,
temperature and heat flux distributions for the three-dimen-
sional combustion chamber. The calculated heat fluxes at
the wall have been compared with experimental measure-
ments taken on the boiler for three sets of operating condi-
tions, and they indicated that confidence can be placed in
the results.

In these models and codes [7,8] the Hottel and Cohen’s
zone method of analysis for energy balance coupled with
the Monte Carlo method for the evaluation of total inter-
change factors (TIF) was a kind of solution of radiative
transfer equation in that time.

The comparisons and evaluations of the predictions
obtained by those conceptions [7,8] against the predictions
of others related to particles radiation with anisotropically
scattering, are difficult because the codes [7,8] did not deal
with particles radiation only. Those 3-D codes link fluid
flow, turbulence model, combustion pattern, heat trans-
fer by convection, conduction and radiation, anisotropic
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particles scattering and gas radiative properties models.
Thus it was very difficult here to carry out the analysis of
the role played only by the particles radiation with aniso-
tropically scattering.

Yu et al. [9] presented an extension of WSGGM to a
mixture of non-gray gas and gray particles. They used dis-
crete ordinates method for the solution of radiative transfer
equation which was coupled with WSGGM. In that paper
the relation between the weighting factors used in the
WSGGM for a mixture of non-gray gas and gray particles
with scattering, when the thermal non-equilibrium exist,
i.e. the gas and particles temperature are different, has been
discussed. This model was applied to two cases. First case
was a one-dimensional isothermal mixture of non-gray gas
(CO2, H2O and transparent inert gas) and soot particles.
They used the Smith et al. WSGGM gas radiative proper-
ties model [10] for the mixture of CO2, H2O and a transpar-
ent inert gas. The algebraic expression based on Rayleigh
small particles limit [11], was used for the evaluation of
soot absorption coefficient. Second calculation case con-
sisted of a pure scattering medium in a cylindrically sym-
metric geometry and was used to examine the effect of
anisotropy on radiative heat flux. The scattering phase
function was presented by the approximation of a finite ser-
ies of Legendre polynomials.

Solovjev and Webb [12] presented an efficient method
for modeling radiative transfer in multi-component gas
mixture with soot. The method is based on the spectral line
weighted sum of gray gases (SLW) model. The gas mixture
was considered as a single gas whose absorption distribu-
tion function (ADF) was evaluated through the distribu-
tion functions of the individual components in the
mixture. The soot was taken as another gas in the mixture.
The verification of the method was carried out by the
comparison with line-by-line (LBL) solution for radiative
transfer equation for mixtures of water vapor, carbon
dioxide and carbon monoxide with various volume frac-
tions of soot. Their predictions were compared against
the previously published results calculated by statistical
narrow band (SNB) model and by WSGGM [13]. The pre-
dictions were done for one-dimensional geometry and
related to particles material only for soot particles. The
calculation of soot absorption coefficient was done by
using the Rayleigh small particles limit [11]. In that expres-
sion the absorption coefficient is an algebraic relation
that depends on real and imaginary part of the complex
index of refraction, soot volume fraction and medium
temperature.

Ayranci and Selcuk [13] developed a methodology based
on method of lines solution of discrete ordinates method
for solution of the 3-D transient radiative transfer equa-
tion. Method of lines (MOL) consists of converting the sys-
tem of partial differential equations (PDF) into an ordinary
differential equation (ODE) initial value problem. It is done
by discretizing the spatial derivatives and integrating the
resulting ordinary differential equations by a sophisticated
ODE solver. The method was applied for the prediction of
transient and steady state transmittances in a cubical geom-
etry. The considered medium in the enclosure is purely iso-
tropically scattering i.e. having both, scattering coefficient
and scattering phase function equal to unity. The predic-
tions were validated against the Monte Carlo solutions
found in the literature. It appeared that the method is flex-
ible for implementation of linear spatial differencing
scheme, flux limiters and weighted essentially non-oscilla-
tory methods. In addition, it was found that Van Leer flux
limiter provides stable, accurate and efficient solution.

Coelho [14] demonstrated a new method based on a
hybrid finite volume/finite element discretization of the
radiative transfer equation. The method was applied to
multi-dimensional rectangular enclosures with gray
absorbing–emitting–scattering media. In this approach
the spatial discretization was performed by using finite vol-
ume method and angular discretization by basis functions
commonly employed in the finite volume method. The
comparisons of the predictions for two- and three-dimen-
sional enclosures against the results calculated by analyti-
cal solution showed that the numerical solution converges
to the analytical one as the discretization is refined. In this
study the gray delta-Eddigton approximation as scattering
phase function was used. This approximation is defined for
a specific type of particulate medium.

Trivic et al. [15] developed a new mathematical model
and code for radiative heat transfer of particulate media
with anisotropic scattering for 2-D rectangular enclosure.
The model is based on the coupling of (i) finite volume
method for the solution of radiative transfer equation with
(ii) Mie equations for the evaluation of scattering phase
function. The predictions were compared against the only
found results, published 15 years ago [6]. For those results
[6] the S-N discrete ordinates method for the solution of
radiative transfer equation and the Legendre polynomials
expansions for the evaluation of scattering phase function
were used. The agreement between the results in [6,15] is
very good. The advantages of new model and code [15]
are in their straight forward application to any given parti-
cles parameters without the need for previously designed
analytical expression for scattering phase function. In addi-
tion, that analytical expression, with generated expansion
coefficients, is restricted and can be used only for that par-
ticular case of particle parameters. The new model was
applied to the solid particles of several various coals and
of an ash and the series of 2-D predictions are performed.
The effects of particle size parameter and of scattering
albedo on radiative heat flux and on incident radiation
were analyzed. It was found that the model developed is
reliable and very accurate and thus suitable for extension
towards (i) 3-D geometries, (ii) mixtures of non-gray gases
with particles as well as for (iii) incorporation in computa-
tional fluid dynamics codes.

Many previous works which consider particles radiation
are incomplete and have the drawbacks from the point of
view of generality, engineering modeling and industrial
applications. They usually deal with: (i) isotropic scatter-



D.N. Trivic, C.H. Amon / International Journal of Heat and Mass Transfer 51 (2008) 2711–2732 2715
ing, (ii) 1-D or 2-D geometries, (iii) scattering phase func-
tion (SPF) as an approximation, i.e. as Legendre polynomi-
als expansions, delta-Eddigton approximation etc., valid
only for that particular particle’s parameters and (iv) an
arbitrary value of scattering coefficient which is not related
to any particle’s parameters.

The radiation under the real conditions is mainly tri-
dimensional. Considering the gray delta-Eddigton phase
function approximation, used in [4,14], it should be noticed
that this function is not general. It mainly accounts for
highly forward scattering of the particles. All these approx-
imations of SPF as Legendre polynomials expansions [6,9],
delta-Eddigton approximation [4,14] etc., can be used only
for very specific cases.

What is missing in literature, but always needed in engi-
neering modeling and in industrial application is a 3-D
more general model and code for the radiation of particu-
late media with non-isotropic scattering. Here the scatter-
ing phase functions should not be arbitrarily taken but
have to be related to the parameters of real particles, i.e
to the particles existing in that enclosure. These parameters
of particle are particles diameter, complex refractive index,
wavelength of incident radiation etc.

The 2-D analysis [15] was performed for the sake of
comparison against only available benchmark [6] and for
the sake of validation of the methodology, because for
3-D particles radiation with anisotropic scattering hardly
can be found any benchmark case. The two-dimensional
version of the code [15] has been successfully tested against
the predictions reported in Ref. [6] for isotropic and aniso-
tropic scattering. The advantages and the benefits of the
2-D model presented in Ref. [15], compared with other
conceptions, is discussed and proved in [15], and it will
not be repeated here. The simile merits can be expected
for the methodology extension to 3-D cases.

In the present study two tasks have been done. First is
the extension of the methodology developed in [15], based
on the coupling of Finite Volume Method with Mie Equa-
tions, to three-dimensional geometries. It was never done
before to the best knowledge of authors. Second is, because
of the lack of the benchmark for the validation of these 3-D
predictions, the development of a new model and code for
generating the benchmark results.

Thus the predictions calculated by 3-D FVM with ME
had to be compared against the results calculated by
another original model and code which should use com-
plete different numerical techniques. The new model and
code developed here for benchmark are based on a combi-
nation of 3-D Zone Method (ZM) with Monte Carlo
Method (MCM). Because this conception (ZM + MCM)
is numerically expensive, i.e. time consuming and inconve-
nient for engineering modeling, it was used and is suggested
only as a benchmark.

It is believed that this model, 3-D FVM with ME, is reli-
able, accurate and convenient for engineering applications.
Also, once this methodology is validated, it can be used for
more complex modeling as 3-D radiation of mixtures of
non-gray gases with gray and with non-gray particles, as
well as to be incorporated in CFD codes.

2. Mathematical formulations

2.1. Governing equations for finite volume method coupled

with Mie theory

2.1.1. Radiative transfer equation for 3-D particulate media

The particulate medium in this study is considered as a
gray medium. The equation for 3-D radiative heat transfer
for a gray medium is given in more references by various
authors, as by Ozisik [15], Siegel and Howell [16] and Mod-
est [17]. It is given as

dIð~r; ŝÞ
ds

¼ �bð~rÞIð~r; ŝÞ þ Sð~r; ŝÞ ð1Þ

This equation means that the change of intensity along a
path, or the energy accumulation, is equal to the difference
between the energy gained and energy lost. The term
�bð~rÞIð~r; ŝÞ presents attenuation and term Sð~r; ŝÞ accounts
for augmentation.

The extinction coefficient b, is given as

bð~rÞ ¼ jð~rÞ þ rð~rÞ ð2Þ

where jð~rÞ represents the absorption of radiant energy and
rð~rÞ accounts for the out-scattering of radiant energy.

The energy source function, Sð~r; ŝÞ, is calculated as

Sð~r; ŝÞ ¼ jð~rÞIbð~rÞ þ
rð~rÞ
4p

Z
4p

Ið~r; ŝ0ÞUðŝ0; ŝÞdX0 ð3Þ

The first term of the right hand side of this expression,
jð~rÞIbð~rÞ, accounts for gas emission while the second term
represents the accumulation of radiant energy due to in-
scattering from all other directions in the domain.

Radiant intensity I depends on spatial position ~r and
angular direction ŝ. For 3-D rectangular enclosure, I
depends on five spatial variables, I(x, y, z, h, /). Here x,
y, z are the Cartesian coordinates of the position vector,
~r, and h, / are the polar and planar angles respectively that
define the intensity direction ŝðh;/Þ.

The scattering phase function, Uðŝ0; ŝÞ, is equal to unity
for isotropic scattering and has various values in various
directions, ðŝ0; ŝÞ, for anisotropic scattering.

2.1.2. Discretized form of 3-D radiative transfer equation

Detailed procedure of discretization of 3-D radiative
transfer equation and of source function for finite volume
method is presented in several sources as [18–20]. Therefore
this will not be derived and discussed here again. Only final
discretized equations needed for the explanation of the link
with Mie theory will be considered and used herewith. Also
the radiative heat transfer relations as the incident radia-
tion coming from all directions (i.e., integrated over 4p
radians), Gð~rÞ, the radiative heat flux in the direction of
the unit vector î expressed as qið~rÞ and the divergence of
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the radiative heat flux, designated by $ � q, used in this
work, are presented in details in sources [18,20,21] and it
will not be discussed here once again.

By integrating Eq. (1) over control angle and control
volume and after that by applying the divergence theorem
on its left hand side, Eq. (1) is transformed towards discret-
ization. In finite volume method, the magnitude of the radi-
ative intensity is taken constant over the control angle and
control volume. Under these assumptions, for six control
volume faces, i.e. for 3-D geometry, Eq. (1) can be written
in a simple way as

X6

i¼1

Il
i Ai

Z
DXl

ðŝl � n̂iÞdX ¼
Z

DXl

Z
DV
ð�bIl þ SlÞdV dX ð4Þ

where source function written in discretization form is

Sl ¼ jIb þ
r

4p

XL

l0¼1

Il0Ul0lDXl0 ð5Þ

In Eq. (5), the quantity Ul0l is the average scattering phase
function from control angle l0(that is incident angle) to con-
trol angle l (that is scattering angle). This average scattering
phase function is the link with Mie theory, i.e. it will be
evaluated by using Mie equations.

The areas, or six control volume faces, Ae, Aw, An, As, Af

and Ar are defined as

Ae ¼ Aw ¼ DyDz; An ¼ As ¼ DxDz; Af ¼ Ar

¼ DxDy ð6Þ

The volume of control volume is denoted as

DV P ¼ DxDyDz ð7Þ
The areas Ae and Aw are equal for Cartesian coordinates,
but the different symbols are used for the sake of generality.
The same is for areas An and As as well as for areas Af and
Ar.

To relate the intensity at the boundaries of control vol-
umes to the nodal intensities, spatial differencing schemes
are needed. One of the available schemes is the step
scheme, which sets the downstream boundary intensities
equal to the upstream nodal intensities. The step scheme
was used within this study.

A more compact form of discretization equation suit-
able for control volume pointing in all directions (and for
various marching procedure following directions cosine)
is written as

al
P Il

P ¼ al
W Il

W þ al
EIl

E þ al
SI l

S þ al
N Il

N þ al
RIl

R þ al
F I l

F þ bl ð8Þ

where bl is source term in discretization equation and is cal-
culated as

bl ¼ Sl
PDV PDXl ð9Þ

Eq. (8) is used to calculate the new values of radiant inten-
sities, and they are calculated as follows:

Il
P ¼

al
W Il

W þ al
EIl

E þ al
SIl

S þ al
N Il

N þ al
RIl

R þ al
F Il

F þ bl

al
P

ð10Þ
Detailed derivation and presentation of the other variables
related to the discretization is given in [18–20] and it will
not be given here again.

2.1.3. Discretized boundary conditions

For an opaque diffuse surface, the boundary condition
given in the form of the boundary intensity is

Ið~r; ŝÞ ¼ eð~rÞIbð~rÞ þ
qð~rÞ
p

Z
ŝ0 � n<0

Ið~r; ŝ0Þĵs0 � ~njdX0 ð11Þ

On the right hand side of Eq. (11) there are two expres-
sions. The first one is the emission due to the surface tem-
perature where Ib is the so-called black body radiation. The
second term is the reflection of the incoming intensities.
The radiation energy leaving an opaque diffusion surface
is just the sum of these two effects.

The discretized form of Eq. (11) is as follows:

Iw ¼ ewIB þ
qw

p

X
Dl0

cx

I l0

wDl0

cx ð12Þ

This, so-called temperature boundary condition, was used
for the problems analyzed in this study within the com-
puter codes developed here. When the heat flux at the wall
is prescribed, the intensity leaving that diffuse, opaque wall
is given in discretized form as

Iw ¼
q
p
þ 1

p

X
Dl0

cx

I l0

wDl0

cx ð13Þ

The other types of boundary conditions as Symmetry Con-
ditions, Periodic Conditions etc, and their detailed descrip-
tion as well as the explanation of the variables can be found
in Chai’s Ph.D. Thesis [18,20]. If it is needed, the discret-
ized form of those boundary conditions can be easily incor-
porated in the code developed here.

2.1.4. The link of control volume method with Mie theory

The radiation incident on a solid particle is partly
absorbed and partly scattered. The scattering is a disper-
sion of part of the incident radiant energy in different direc-
tions. The fraction of the energy that is scattered into any
given direction, defined by scattering angle c is given by
Scattering Phase Function as

UðcÞ ¼ 2
i1 þ i2

x2Qsca

ð14Þ

The quantities i2 and i2 are the non-dimensional polarized
intensities, x is particle size parameter and Qsca is efficiency
factor for scattering. The calculation of Scattering Phase
Function (SPF), as well as the all relevant variables related
to Eq. (14), are discussed and presented in details in Appen-
dix A of the Ref. [26] and it will not be repeated here.

A rigorous theory of radiative infrared waves interacting
with solid particles, developed for several simple geome-
tries, i.e. for spherical and cylindrical particles, has been
presented by Van de Hulst [22]. The mathematical descrip-
tion of the interaction between incident radiation and a sin-
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gle solid particle is presented with Maxwell’s wave equa-
tions. The solution to this problem was obtained by Gustav
Mie [22,23], who solved Maxwell’s wave equations with the
appropriate boundary conditions for single cylindrical and
spherical particles. The same problem was solved by
Danish physicist Lorenz [24] without using the Maxwell’s
equations. Lorenz developed his own theory of electromag-
netism. Although Lorenz’s work predates that of Mie, the
general theory related to the scattering of radiation by
absorbing spheres is known as ‘‘Mie Theory”.

Mie theory has been presented in many sources as by
Van de Hulst [22], Hottel and Sarofim [25] and Modest
[17]. The brief theoretical background and the basic equa-
tions and functions of Mie theory are summarized by Tri-
vic et al. in Appendix A of the Ref. [26]. In that reference
the application of Mie equations for 2-D anisotropic scat-
tering coupled with Finite Volume Method is presented.

What is needed by Finite Volume Method related to
anisotropic scattering is the average scattering phase func-
tion, Ul0l, to be used, i.e. substituted in Eq. (5). This average
scattering phase function is also called in literature as the
normalized scattering phase function. It gives average
energy scattered from solid control angle defined by inci-
dent direction l0 to solid control angle defined by direction
l.

There are two different ways to evaluate the normalized
scattering phase function Ul0l. They are: (1) the way when
analytical expression for scattering phase function exists
(various approximations as a finite series of Legendre poly-
nomials etc.) and (2) the way when analytical expression
for scattering phase function does not exist and scattering
phase function will be evaluated through complex proce-
dure related to Mie equations.

The first way when the analytical expression for scatter-
ing phase function exists, the average scattering phase func-
tion can be calculated then as

Ul0l ¼
R

dXl0 Uðŝ0; ŝÞdX0

DXl0
ð15Þ

The second way, when the analytical expression for scat-
tering phase function does not exist, the average scattering
phase function is calculated as

Ul0l ¼
R

DXl

R
dXl0 Uðŝ0; ŝÞdX0 dX

DXlDXl0

¼

PLS

lS¼1

PL0S
l0S¼1

Ul0S lS DXl0S DXlS

DXlDXl0
ð16Þ

The analytical expressions for the scattering phase func-
tions for various particle materials considered within this
study do not exist. Thus Eq. (16) is used in this work.
The detailed derivation of Eq. (16) is presented and dis-
cussed in Ref. [20].

The calculation procedure is the following. The average
scattering phase function, Ul0l evaluated by Eq. (16) and
used in Eq. (5) for calculation of source function, Sl,
depends inter alia on the discrete values of scattering phase
function, i.e. on Ul0S lS values. The values of Ul0S lS are in turn
evaluated from Mie equations using Eq. (14).

That is the link of finite volume method with Mie
theory.

The derivation and explanation of Eq. (14), which is
used for calculation of the discrete values of scattering
phase function, is presented in more details in Refs.
[17,22,25,26].

It should be noticed here that Ul0S lS and U(c) is the same
expression having two different designations, where U(c)
comes from Mie theory notation and Ul0S lS is used within
evaluation of average scattering phase function. Therefore
the following expression can be written:

Ul0S lS ¼ UðcÞ ¼ 2
i1 þ i2

x2Qsca

ð17Þ

It should be noticed that in Eq. (16) each of the solid
angle sub-control angle, i.e. DXl0S and DXlS , for incident
and scattering direction respectively, is defined with two,
polar and asimuthal, angles and that the summation over
each of them should be performed. Therefore, in Eq. (16),
double summation sign in denominator will be transformed
into four summation signs and those have been introduced
in the code during the computer program editing.

The values of scattering angles which are defined by the
sub-control angles DXl0S and DXlS , i.e. for the incident and
scattering directions bS 0 and bS respectively, must be known,
i.e. previously defined, and then for them as the arguments,
the values of scattering phase function can be evaluated.
Those scattering angles are evaluated by applying the fol-
lowing expression:

cos w ¼ ll0 þ ð1� l2Þ1=2ð1� l02Þ1=2 cosðu0 � uÞ ð18Þ

Once the scattering angle w, designated as c in Mie equa-
tions, is evaluated by Eq. (18), the scattering phase function
Ul0S lS for that value of scattering angle, for given particles
parameters as particle diameter Dp and complex index of
refraction m and for known wavelength of incident radia-
tion k (or for given particle size parameter x) is calculated
by using Eq. (17). Also it could be written that Ul0S lS ¼
Uðc;Dp;m; kÞ.

Therefore the value Ul0S lS that is the value of scattering
phase function for the scattering from a discrete incident
direction bS 0 into discrete scattering direction bS must be
known before Eq. (16) can be applied.

Usually for the evaluation of average scattering phase
function, the researchers as Kim and Lee [6] and Chai
et al. [19] have used Eq. (15), i.e. they have used the analyt-
ical expression for scattering phase function that was the
approximation by a finite series of Lagendre polynomials.
Whenever a reliable analytical expression for scattering
phase function exists, it is much simpler to apply Eq. (15)
than Eq. (16). In this study, not having and using analytical
expressions, the evaluation of average scattering phase
function was carried out by applying Eq. (16) and by using
Mie equations.
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It should be mentioned that to the authors’ best knowl-
edge, among other things the implementation and valida-
tion of Eq. (16) for the radiation of anisotropically
scattering media, except in only one case i.e. in Ref. [26],
is never reported in literature so far.
2.2. Governing equations for zone method linked with Monte

Carlo Method

2.2.1. Zone method for calculation of radiative heat transfer
One of the numerical techniques for solving radiative

transfer equation which divides the system into a number
of finite elements, known as the zone method of analysis,
was developed by Hottel and Cohen [27]. It is also pre-
sented and explained in Ref. [25].

In the zone method the enclosure and its surrounding
surfaces are divided into a number of volume and surface
zones each of which is assumed to have uniform properties.
A radiative energy balance is written on each zone giving
the net radiative heat transfer between that zone and every
other volume and surface zone in the system.

For a given surface zone i a radiative energy balance,
considering the interaction between that surface zone i

and all other surface zones j and volume zones k in the
enclosure, can be written as

Qs;iðnetÞ ¼
X

j

SjSiEs;j þ
X

k

GkSiEg;k � eiAiEs;i ð19Þ

Here Qs,i(net) is the net heat rate on the surface zone i and
SjSi and GkSi are the total interchange areas. First expres-
sion on the right hand side of Eq. (19) gives the radiative
energy received from all surface zones in the system, second
term accounts for radiative energy received from all vol-
ume zones of the enclosure and third term is the radiative
heat emitted by the surface zone i.

Similarly the radiative energy balance on a volume zone
can be expressed as

Qg;iðnetÞ ¼
X

j

SjGiEs;j þ
X

k

GkGiEg;k � 4KiV iEg;i ð20Þ

where Qg,i(net) is the net heat rate in the volume zonei, also
called volumetric radiative heat source, and SjGi and GkGi

are the total interchange areas for radiative energy related
to volume zone i.

There are two methods for calculating these total inter-
change areas: (1) the Determinant Method and (2) the
Monte Carlo Method.

In this study the total interchange areas are defined by
the Monte Carlo Method.

The interchange of radiation between the various vol-
ume and surface zones within the combustion chamber is
determined by the Monte Carlo method, described in
details by earlier authors [28–30]. The fraction of radiation
emitted from any one zone and absorbed by any other zone
was determined by this random paths technique. Although
this procedure is time-consuming in computation time, it is
in principle completely rigorous for the emitting, scattering
and absorbing process.

2.2.2. Monte Carlo method for total interchange areas

calculation

The Monte Carlo method is based on probability and
statistics. The concept of energy bundle is introduced to
simulate actual physical process of radiation [16]. A statis-
tically meaningful number of energy bundles are followed
from initial point of emission through randomly deter-
mined paths until the final point of absorption in the
system.

The definition of total view factor fij is introduced which
is the ratio of the number of bundles absorbed in zone ‘‘j”
and originally emitted from zone ‘‘i”, to the total number
of bundles released from zone ‘‘i”. The total interchange
areas can be expressed in the following form:

SjSi ¼ Ajejfji ð21Þ
GkSi ¼ 4KkV kfki ð22Þ
SjGi ¼ Ajejfji ð23Þ
GkGi ¼ 4KkV kfki ð24Þ

The Total Interchange Areas (TIA), which have the dimen-
sion of area (L2), are linked with Monte Carlo method
through Total View Factors fij which are also called in
some literature Total Interchange Factors (TIF).

The random paths are formulated by following ran-
domly generated decisions. The cumulative distribution
function R(n) is taken to be a random number Ri. Once
the random number Ri is generated, the required value
for the appropriate variable n (which can be coordinates
of the points, angles of direction, surface emissivities etc.)
is calculated from the available relation R(n).

Different cumulative distribution functions R(n) are
used for different variables, such as coordinates of the emis-
sion points, the angles determining the direction of emis-
sion, the maximum distance of travel etc. The methods of
obtaining these cumulative distribution functions are pre-
sented in Refs. [11,16]. Every time a decision is necessary
a random number in the interval 0.0–1.0 is generated.

The Monte Carlo relations used in the absence of solid
particles are reported in Refs. [29,31,32].

The method adapted for the calculations of the radiative
interchange involving the scattering by solid particles is
reported in Refs. [30,33].

The cumulative distribution functions and basic equa-
tions used within Monte Carlo method, as well as the pro-
cedure related to energy bundle history are briefly
presented in Appendix A.

3. Numerical characteristics

Two new different computer programs for the solution
of 3-D RTE for the gray particles radiation are developed
in this study. The Mie theory is incorporated in both. The
first code is a combination of FVM and Mie theory. The
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second code is based on the zone method where the total
interchange areas are evaluated by Monte Carlo method.
The second computer program consumes much more com-
puter time and memory and was used here only to obtain
the benchmark results for testing the first code.

The Mie theory has been incorporated in both method-
ologies used here, i.e. in (i) FVM coupled with Mie equa-
tions and in (ii) zone method linked with Monte Carlo
technique. But it should be noticed that the conceptions
of application of Mie theory in (i) and (ii) are completely
different. In methodology (i), for various scattering angles
the scattering phase functions were calculated to be used
for the evaluation of scattered radiation energy within
the process of solving RTE by FVM, i.e. to be used in
Eq. (5) via Eq. (16). In methodology (ii), the angular distri-
bution function, Eq. (A.8), in Appendix A, is set equal to
the generated random number R11 for the sake of calculat-
ing the scattering angle a which is needed to define the
direction of the scattered energy beam. The scattering angle
a, together with angle b, defines the scattered direction
which is necessary, using Eqs. (A.10) and (A.11), for the
following the further history of the energy beam.
3.1. Numerical features of 3-D FVM coupled with Mie

theory

A new original computer code that solves RTE for the
gray particulate media in 3-D Cartesian coordinates based
on FVM and coupled with Mie equations is developed. It is
a modification of the previously developed 2-D code pre-
sented in Ref. [26]. Detailed and thorough discussion of
finite volume method and of discretization procedure used
in this work is given in literature [18–20] and it will not be
discussed again. The spatial differencing scheme used in
this work to relate the boundary intensities to nodal inten-
sities is step scheme. This scheme sets the downstream
boundary intensities equal to the upstream nodal
intensities.

The iterative process of intensity calculation is repeated
for all specified intensity directions and a solution is con-
sidered converged when it satisfies the following criterion:

jIl
P � Il0

P j=Il
P 6 10�6 ð25Þ

Here Il
P is the intensity calculated in the latest and Il0

P the
previous iteration.

The scheme appeared to be very efficient. The guess of
initial intensity field is set to zero. The solution converges
relatively fast. For the particular cases of anisotropic scat-
tering in 3-D geometry where the particles cloud is consid-
ered as a gray medium, the incident heat flux is calculated
with 11 iterations. But it should be noticed that, for 3-D
geometry, within an iteration the code has eight sweeps,
each of which in one of eight ‘‘vertex directions”.

The cubical enclosure is subdivided into 15 � 15 � 15
control volumes. The previous numerical experiments and
analysis for this grid with the 3-D gray media [21] show
that the results are grid independent.

The angular discretization has the number of increments
in polar and azimuthal directions 12 � 20 respectively. The
number of increments in polar and azimuthal directions of
sub-control angles, within a control angle, is 3 � 3 respec-
tively. Thus, the total number of solid sub-control angles,
within a control angle, is taken 3 � 3 = 9 and is the same
for both, incident and scattering directions.

The numerical experiments were performed by changing
the number of solid sub-control angles. The subdivisions as
3 � 4, 3 � 5, 4 � 4, 4 � 5, 4 � 6 etc were carried out and it
was found that these increases of sub-control angles did not
influence on the accuracy.

For this FVM + ME code, the CPU time for the calcu-
lation cases performed here with 1.6 GHz Intel Pentium IV
Processor with 256 KB Cache, having 1 GB (2*512 MB)
133 MHz non-ECC SDRAM of the work station desig-
nated as DELL optiplex GX240 is, depending on the case,
about 4 min.

3.2. Numerical features of zone method linked with Monte

Carlo method

Another code based on zone method, where total inter-
change factors were calculated by Monte Carlo method,
was developed. It was done because the benchmark values,
needed for comparison with the predictions of FVM + ME
code, were not found in literature for these calculation
cases.

For the sake of zone method implementation the consid-
ered geometry, that is the cube, is divided in 15 equal incre-
ments in each of the directions i.e. in x, y and z directions.
It gives the total number of volume and surface zones 3375
and 1350 respectively. The total interchange factors (TIF-s)
of radiative heat transfer were calculated using Monte Car-
lo method by emitting 50,000 energy bundles from each
volume and surface zones. The numerical experiments with
various numbers of energy bundles as with 10,000, 20,000,
50,000 and 100,000 were performed. It was found, for this
particular case, that the number of 50,000 bundles gives the
predictions which are not sensitive on further increasing of
bundles number.

Related to Mie equations that were incorporated (but in
different ways) in both codes, i.e. in (i) FVM + ME code
and in (ii) ZM + MCM code, the following numerical fea-
tures should be mentioned. For the designation ‘‘infinite
refractive index” the value of 108 is taken. The larger values
did not affect the results. Also for the definition of ‘‘very
small particles” the value of Dp = 0.01 lm is taken, because
the smaller values, (here is taken k = p), i.e. for x < 0.01,
did not influence on the predictions for function F2. The
various infinite series within Mie equations were termi-
nated for the value n = 1.2x + 9 where x is particle size
parameter. This was proposed by Deirmendjian et al. [34].

For this ZM + MCM code, the CPU time for the
calculation cases performed here with the same computer
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mentioned above varies, depending on the case, between 14
and 16 min. Compared with 4 min taken by FV + ME, it
was found that ZM + MC took from 3.5 to 4 times more
the CPU time.
4. Calculation cases performed

The system geometry considered is a cube with side
dimension 1.0 presented in Fig. 1. All six walls of the cube
are black, i.e. for all of them e = 1 and q = 0.

The walls are designated as west, east, south, north, rear
and front having the subscripts w, e, s, n, r and f respec-
tively. All the walls, as well as the medium in the enclosure,
are kept cold and their emissive powers are Ebw = Ebe = Eb-

s = Ebn = Ebf = 0. Only the rear wall is taken as a hot hav-
ing constant emissive power Ebr = 1.0. The enclosure
contains pure scattering medium, i.e. for that medium the
scattering albedo is equal to unity (x = 1), the absorption
x       

y

z

east wall 
    x=1 

front wall 
    z=1 

Ebr=1.0

Q*
zf

Q*
zr
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west wall 
     x=0 

 north 

      south

east  west 

x

 y

Q*
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directions orientation

north wall 
     y=1 

   rear wall 
(hot surface) 
       z=0 

Fig. 1. System geometry.

Table 1
Data for evaluation of scattering phase functions F1, F2, B1 and B2 by Mie

Scattering phase
function designation

Particle size
parameter x = Dpp/k

Real
of re

F1 5 1.33
F2 2 1.33
B1 1 very
B2 Dp very small, taken x = 0.01 very
coefficient of medium (particles cloud) is equal to zero
(jp = 0) and scattering coefficient is taken as unity
(r = 1). The quantities presented in this study are non-
dimensional, i.e. normalized. The values as sx, sy and sz

called optical coordinates and equal to bx, by and bz

respectively as well as the quantities as sxL, syL, szL desig-
nated as overall optical thicknesses and equal to bL are
introduced. The relations between them as e.g. sx/sxL gives
a non-dimensional coordinate X = x/L.

Considering various particulate media, the predictions
with both models, i.e. with (1) FV + ME and with (2)
ZM + MC model, were carried out within this study. They
are done for an isotropic medium, for four scattering phase
functions (designated as F1, F2, B1 and B2) used by Kim
and Lee [6] and Trivic et al. [26], as well as for a group
of four different coals and an ash used in Ref. [26].

With capital letters F and B are indicated the scattering
phase functions that have the peak values in forward and
backward directions respectively. It means that from the
total scattered energy backward scattering scatters more
energy into the backward directions, while the forward
scattering scatters more energy into the forward directions.
The scattering phase functions F1, F2, B1 and B2 are
presented and discussed in Refs. [6,15,18]. The data related
to particles parameters for the definition of scattering
phase functions F1, F2, B1 and B2 are presented in
Table 1.

The dimensionless quantities that are calculated by both
mathematical models are: (i) the net radiative heat flux in y-
direction, Q�ys, at the middle of south wall (X = 0.5,
Y = 0.0) along z-coordinate presented in Tables 3 and 4
and Fig. 2(a)–(c), (ii) the net radiative heat flux in z-direc-
tion, Q�zr, at the middle of rear, hot, wall (Y = 0.5, Z = 0.0)
along x-coordinate presented in Tables 5 and 6 and
Fig. 3(a)–(c), (iii) the net radiative heat flux in z-direction,
Q�zf , at the middle of front, cold, wall (Y = 0.5, Z = 1.0)
along x-coordinate presented in Tables 7 and 8 and
Fig. 4(a)–(c), (iv) and the average incident radiation
G�z ¼ G=4E along the centerline (X = 0.5, Y = 0.5) pre-
sented in Tables 9 and 10 and Fig. 5(a)–(c). Also the net
radiative heat flux in z-direction Q�z ¼ Qz=E along the cen-
terline (X = 0.5, Y = 0.5) is calculated, but only with
FV + ME, and presented in Table 11 and in Fig. 6(a). Here
the z-direction is taken because the anisotropy of scattering
phase functions plays important role in the radiative heat
transfer when the boundary conditions are not symmetric.
This is the case here in z-direction because the emissive
equations

part of complex index
fraction (absorptive index) n

Imaginary part of complex index
of refraction (refractive index) k

0
0

large, taken 108 0
large, taken 108 0
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power of rear wall is equal to unity and the emissive power
of front wall is equal to zero. For the system with symmet-
ric boundary conditions the effects of anisotropy are can-
celled out to give isotropic results, regardless of
anisotropy of the scattering phase functions involved.
The net radiative heat flux in z-direction Q�z ¼ Qz=E is eval-
uated as the difference of radiative heat flux in positive z-
direction Qþ�z ¼ Qþz =E and of radiative heat flux in negative
z-direction Q��z ¼ Q�z =E.

It should be noticed that for the predictions where real
fuels and an ash were analyzed, the geometry, the input
parameters of the system (q = 0,x = 1,r = 1, jp = 0) and
all the boundary conditions (q, e, Ewb, Eb) are the same as
in previous calculation sets. Everything is the same except
particles materials that are now: carbon, anthracite, bitu-
minous, lignite and an ash. The data for evaluation of scat-
tering phase functions for coals and ash considered related
to near infrared region are taken from [11, Chap. 10], and
is presented in Table 2. Instead of artificial media with
anisotropic scattering, now the real engineering fuels are
considered. The particle size parameters for all materials
are taken as unity. It should be mentioned that here again,
as in previous cases, particles concentrations and particles
diameters are implicitly set or defined through chosen r,
jp, x and x, and they are not explicitly expressed here.

5. Results and discussion

The curves for scattering phase functions (SPF-s) desig-
nated as F1, F2, B1 and B2 are presented in figures given in
Refs. [6,18]. Also the SPF-s for four coals and ash, for the
specified particles parameters, are given in figures shown in
[26]. Therefore those figures will not be repeated here
again. In this study the predictions were performed by both
methods, i.e. by FV + ME and by ZM + MC, for all nine
SPF-s as well as for isotropic scattering. For the sake of
comparison with the results which will be calculated by
other numerical methods and by other researchers, these
sets of predictions are presented in Tables 3–11. In Figs.
2–5 are shown the comparisons between prediction
obtained by two methods for isotropic scattering, phase
functions F1, B1 and carbon. They are not given for
functions F2, B2, anthracite, bituminous, lignite and
ash. The following reasons are for that. It can be seen in
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Tables 3–11 that the predictions for phase functions F2 and
B2 do not differ very much and are similar to predictions
F1 and B1 respectively. Therefore, related to the compari-
son of predictions obtained by FV + ME and by ZM +
MC, it was found that the results of analysis and the con-
clusions for F1 and B1 are the same and valid for F2 and
B2 respectively. In Ref. [26] Trivic et al. have shown, in
Fig. 2(a), the SPF-s for carbon, anthracite, bituminous, lig-
nite and fly-ash. It was concluded there, that under the con-
ditions considered, if the different particle materials (here
the four coals and ash) have the same shape of scattering
phase functions with small differences between them, it will
result in the same values of net radiative heat flux and of
average incident radiation for all those materials. In addi-
tion, it can be seen in Tables 3–11 that the predicted values
of net radiative heat flux and of average incident radiation
for carbon, anthracite, bituminous, lignite and ash are very
close to each others. Therefore, under the conditions con-
sidered, whatever is found and concluded for carbon, it will
be valid for anthracite, bituminous, lignite and ash. Thus
there is no need to present and consider the graphs for
these four materials and here only carbon was presented.
Therefore in this study the predictions were carried out
for nine scattering phase functions as well as for isotropic
scattering, i.e. for 10 different cases, but only the four char-
acteristic cases were analyzed.

The dimensionless net radiative heat flux, Q�z , in z-direc-
tion along the centerline (X = 0.5, Y = 0.5) for isotropic
scattering, four different phase functions, four different
coals and an ash predicted by Finite Volume Method and
Mie theory is presented in Table 11. It should be mentioned
that Q�z is not calculated by ZM + MC. The structure of
developed ZM + MC model and code gives the net heat
fluxes on the surroundings surfaces, but is not convenient
for calculation of the net heat fluxes within the enclosure,
i.e. out of the walls. For this purpose a new code should
be developed, but it was not the goal of this study.

The more accurate results calculated by ZM + MC,
therefore taken as benchmark, compared against
FV + ME, can be, inter alia, explained in the following
way. Using the large number, e.g. 50,000, energy beams
released from each volume and surface zones, Monte Carlo
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Fig. 4. Non-dimensional net radiative heat flux in z-direction, Q�zf , at the middle of front, cold, wall (Y = 0.5, Z = 1.0) along x-coordinate predicted by
FV + ME and by ZM + MC (q = 0, x = 1, r = 1, jp = 0, cubical enclosure 1 � 1 � 1): (a) isotropic scattering; (b) scattering phase function F1; (c)
scattering phase function B1; (d) carbon.
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method has more efficient, i.e. superior mechanism of heat
transfer than finite volume method. Within FV + ME the
radiative heat is transferred via radiative intensities from
a control volume. The number of the intensities is equal
to the number of solid control angles, which is equal to
the product of increments in polar and planar directions,
e.g. here 6 � 24 = 144. This is always significantly less than
the number of energy beams. Also the application of
Monte Carlo method is a good example where a physical
phenomenon, as radiation, is described by an adequate
mathematical apparatus, here by Monte Carlo method.
Monte Carlo technique intrinsically coincides with radia-
tion and is more accurate by its own nature. On the other
hand MC is numerically expensive procedure needing vast
amount of computer time and memory, especially for com-
plicated geometries and industrial modeling, and therefore
is manly used for creating benchmark results.

In Fig. 2(a)–(d) the dimensionless net radiative heat flux
in y-direction, Q�ys, at the middle of south wall, along z-
coordinate, predicted by FV + ME and by ZM + MC
for: (a) isotropic scattering; (b) scattering phase function
F1; (c) scattering phase function B1 and (d) carbon are
shown. In Fig. 2(a), i.e. for isotropic scattering, a good
agreement between FV + ME predictions and ZM + MC
values (taken as the benchmark) can be seen. In
Fig. 2(b), where the phase function F1 is presented, the
FV + ME values are higher, i.e. overestimated compared
with benchmark. In Fig. 2(c), where the phase function
B1 is shown, the FV + ME values are smaller, i.e. underes-
timated compared with benchmark. The FV + ME predic-
tions shown in Fig. 2(d) for carbon, (carbon has the
scattering phase function with a moderate forward charac-
ter) are slightly overestimated. The trend is similar as for
function F1.

In Fig. 3(a)–(d) the non-dimensional net radiative heat
flux in z-direction, Q�zr, at the middle of rear, hot, wall along
x-coordinate predicted by FV + ME and by ZM + MC
for: (a) isotropic scattering; (b) phase function F1; (c) phase
function B1 and (d) carbon are presented. Taking the
ZM + MC predictions as the benchmark, the follow-
ing results were found. In Fig. 3(a), where the isotropic
scattering is considered, the FV + ME predictions are
little overestimated. The FV + ME predictions for func-
tion F1, which are shown in Fig. 3(b), are to some extent
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Fig. 5. Non-dimensional average incident radiation G* along the centerline (X = 0.5, Y = 0.5) predicted by FV + ME and by ZM + MC (q = 0, x = 1,
r = 1, jp = 0, cubical enclosure 1 � 1 � 1): (a) isotropic scattering; (b) scattering phase function F1; (c) scattering phase function B1; (d) carbon.
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underestimated. These underestimations are between 5.7%
and 7.3%. In Fig. 3(c), where function B1 is presented, the
FV + ME results are overestimated from 2.9% to 7.6%.
The FV + ME predictions presented in Fig. 3(d) for carbon
show fairly good agreement with benchmark

In Fig. 4(a)–(d) the dimensionless net radiative heat flux
in z-direction, Q�zf , at the middle of front, cold, wall along
x-coordinate predicted by FV + ME and by ZM + MC
for: (a) isotropic scattering; (b) function F1; (c) function
B1 and (d) carbon are shown. Analyzing these figures the
following was noticed. In Fig. 4(a), where the isotropic
scattering is presented, the FV + ME results are slightly
overestimated. The FV + ME predictions for function
F1, shown in Fig. 4(b), are significantly overestimated.
These overestimations are from 60.6% to 61.8%. In
Fig. 4(c), where function B1 is presented, the FV + ME
results are little underestimated. The FV + ME predictions
presented in Fig. 4(d) for carbon are overestimated. These
overestimations are from 24.9% to 27.2%.

In Fig. 5(a)–(d) the non-dimensional average incident
radiation G* along the centerline predicted by FV + ME
and by ZM + MC for: (a) isotropic scattering; (b) phase
function F1; (c) phase function B1 and (d) carbon are pre-
sented. It can be noticed fairly good agreement between
FV + ME and ZM + MC predictions for all four cases,
i.e. for isotropic scattering, functions F1 and B1 and
carbon.

In Fig. 6(a)–(d) the effects of anisotropy for phase func-
tions F1, F2, B1, B2, carbon and for isotropic scattering
were shown by using FV + ME mathematical model and
code. The net heat flux along the centerline, Q�z , in
Fig. 6(a); the average incident radiation, G�z , in Fig. 6(b);
the net heat flux on hot surface (rear wall), Q�zr in
Fig. 6(c) and the net heat flux on cold surface (front wall),
Q�zf , in Fig. 6(d) are presented. These graphs are given here,
inter alia, for the sake of comparison and checking with the
appropriate graphs shown in 2-D studies published in
papers [6,26]. The curves in Fig. 6(a)–(d) have the same
shapes and features and keep the same positions between
themselves as the appropriate curves in [6,26]. They con-
firm the tendencies, findings and conclusions written in
[6,26], and will not be presented again.

The graphs presented in Fig. 7(a)–(b) give the net heat
flux, Q�z , along the center line for SPF F2. These curves
show the sensitivity and flexibility of 3-D FV + ME model
and code to the series of input data related to scattering
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Fig. 6. Effects of anisotropy, predicted by FV + ME (q = 0, x = 1, r = 1, jp = 0, cubical enclosure 1 � 1 � 1) for four scattering phase functions, carbon
and isotropic scattering related to: (a) non-dimensional net radiative heat flux in z-direction, Q�z , along the centerline (X = 0.5, Y = 0.5); (b) non-
dimensional average incident radiation G* along the centerline (X = 0.5, Y = 0.5); (c) non-dimensional net radiative heat flux in z-direction, Q�zr, at the
middle of rear, hot, wall (Y = 0.5, Z = 0.0) along x-coordinate; (d) non-dimensional net radiative heat flux in z-direction, Q�zf , at the middle of front, cold,
wall (Y = 0.5, Z = 1.0) along x-coordinate.

Table 2
Data of complex refractive index for different colas and an ash in near infrared region taken from [11] for the evaluation of scattering phase functions

Coal or ash Particle size parameter
x = Dpp/k

Real part of complex index of
refraction (absorptive index) n

Imaginary part of complex index
of refraction (refractive index) k

Carbon 1 2.20 1.120
Anthracite 1 2.05 0.540
Bituminous 1 1.85 0.220
Lignite 1 1.70 0.066
Ash 1 1.50 0.020
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albedo, x, and to wall reflectivity, q respectively. The shape
and the tendency of the curves, as well as their positions,
are the same as it is for 2-D cases presented in [6,26]. Also
the same effects of x and q on Q�z is found as in 2-D cases
[6,26] as well as the same conclusions can be drown and it
will not be discussed again. Figs. 6(a)–(d) and 7(a)–(b) give
an additional proof for the reliability of the 3-D FV + ME
methodology.
It can be seen in Fig. 3(b) and (c) where the net heat flux
on hot surface for phase functions F1 and B1 are presented
respectively as well as in Fig. 4(b) where the net heat flux
on the opposite i.e. cold surface for phase function F1 is
shown, that the differences between FV + ME predictions
and benchmark (ZM + MC results) are significant. It
should be kept in mind that this is for scattering phase
functions F1 and B1 which have the strong forward and



Table 3
Non-dimensional net radiative heat flux in y-direction, Q�ys, at the middle of south wall (X = 0.5, Y = 0.0) along z-coordinate for: isotropic scattering, four
different phase functions, four different coals and an ash predicted by Finite Volume Method and Mie theory (q = 0, x = 1, r = 1, jp = 0, cubical
enclosure 1 � 1 � 1)

Z ISO F1 F2 B1 B2 Carb. Anth. Bitu. Lign. Ash

0.0333 0.5224 0.5306 0.5414 0.5137 0.5046 0.5286 0.5311 0.5302 0.5290 0.5279
0.1000 0.4390 0.4469 0.4663 0.4267 0.4142 0.4477 0.4512 0.4501 0.4483 0.4468
0.1667 0.3704 0.3776 0.4020 0.3563 0.3420 0.3804 0.3845 0.3832 0.3811 0.3794
0.2333 0.3152 0.3225 0.3490 0.3002 0.2852 0.3259 0.3303 0.3288 0.3266 0.3248
0.3000 0.2698 0.2780 0.3046 0.2545 0.2394 0.2807 0.2852 0.2837 0.2815 0.2795
0.3667 0.2314 0.2407 0.2663 0.2163 0.2015 0.2423 0.2468 0.2453 0.2430 0.2411
0.4333 0.1986 0.2089 0.2329 0.1839 0.1697 0.2091 0.2136 0.2121 0.2099 0.2080
0.5000 0.1703 0.1817 0.2037 0.1564 0.1429 0.1805 0.1848 0.1834 0.1813 0.1795
0.5667 0.1461 0.1583 0.1783 0.1329 0.1204 0.1558 0.1599 0.1586 0.1565 0.1548
0.6333 0.1252 0.1383 0.1561 0.1130 0.1013 0.1345 0.1383 0.1371 0.1352 0.1335
0.7000 0.1072 0.1210 0.1367 0.0959 0.0853 0.1160 0.1196 0.1184 0.1166 0.1151
0.7667 0.0916 0.1061 0.1196 0.0813 0.0717 0.0998 0.1032 0.1021 0.1004 0.0990
0.8333 0.0779 0.0930 0.1044 0.0686 0.0600 0.0856 0.0887 0.0877 0.0861 0.0848
0.9000 0.0657 0.0816 0.0906 0.0574 0.0498 0.0728 0.0756 0.0747 0.0733 0.0721
0.9667 0.0544 0.0713 0.0776 0.0473 0.0408 0.0610 0.0635 0.0627 0.0614 0.0604

Table 4
Non-dimensional net radiative heat flux in y-direction, Q�ys, at the middle of south wall (X = 0.5, Y = 0.0) along z-coordinate for: isotropic scattering, four
different phase functions, four different coals and an ash predicted by Zone and Monte Carlo method (q = 0, x = 1, r = 1, jp = 0, cubical enclosure
1 � 1 � 1)

Z ISO F1 F2 B1 B2 Carb. Anth. Bitu. Lign. Ash

0.0333 0.5450 0.4399 0.4529 0.5728 0.5951 0.5174 0.5086 0.5151 0.5194 0.5199
0.1000 0.4591 0.3453 0.3572 0.4847 0.5153 0.4296 0.4225 0.4251 0.4284 0.4320
0.1667 0.3912 0.2788 0.2825 0.4164 0.4506 0.3592 0.3531 0.3584 0.3594 0.3619
0.2333 0.3352 0.2200 0.2304 0.3596 0.3883 0.3061 0.2981 0.2951 0.3013 0.3077
0.3000 0.2865 0.1808 0.1878 0.3136 0.3410 0.2607 0.2511 0.2530 0.2579 0.2626
0.3667 0.2448 0.1474 0.1565 0.2705 0.2911 0.2179 0.2072 0.2136 0.2177 0.2208
0.4333 0.2059 0.1208 0.1268 0.2289 0.2540 0.1876 0.1771 0.1789 0.1837 0.1876
0.5000 0.1742 0.1004 0.1070 0.1979 0.2156 0.1612 0.1520 0.1551 0.1569 0.1605
0.5667 0.1504 0.0836 0.0858 0.1654 0.1893 0.1345 0.1248 0.1293 0.1349 0.1338
0.6333 0.1287 0.0674 0.0704 0.1427 0.1591 0.1120 0.1088 0.1114 0.1125 0.1157
0.7000 0.1083 0.0571 0.0609 0.1214 0.1366 0.0960 0.0919 0.0924 0.0953 0.0959
0.7667 0.0903 0.0480 0.0479 0.1021 0.1147 0.0818 0.0786 0.0802 0.0788 0.0841
0.8333 0.0770 0.0393 0.0408 0.0889 0.0978 0.0682 0.0654 0.0651 0.0666 0.0702
0.9000 0.0641 0.0327 0.0340 0.0722 0.0820 0.0578 0.0548 0.0542 0.0562 0.0579
0.9667 0.0521 0.0264 0.0286 0.0597 0.0642 0.0468 0.0433 0.0449 0.0454 0.0472

Table 5
Non-dimensional net radiative heat flux in z-direction, Q�zr, at the middle of rear, hot, wall (Y = 0.5, Z = 0.0) along x-coordinate for: isotropic scattering,
four different phase functions, four different coals and an ash predicted by Finite Volume Method and Mie theory (q = 0, x = 1, r = 1, jp = 0, cubical
enclosure 1 � 1 � 1)

X ISO F1 F2 B1 B2 Carb. Anth. Bitu. Lign. Ash

0.0333 0.9032 0.9266 0.9079 0.9070 0.9105 0.9043 0.9039 0.9041 0.9043 0.9046
0.1000 0.8815 0.9195 0.8963 0.8836 0.8853 0.8854 0.8858 0.8858 0.8856 0.8855
0.1667 0.8667 0.9144 0.8883 0.8676 0.8683 0.8725 0.8734 0.8732 0.8728 0.8724
0.2333 0.8564 0.9107 0.8825 0.8565 0.8565 0.8633 0.8646 0.8642 0.8636 0.8631
0.3000 0.8491 0.9081 0.8784 0.8487 0.8483 0.8568 0.8584 0.8579 0.8572 0.8566
0.3667 0.8442 0.9063 0.8756 0.8436 0.8429 0.8524 0.8542 0.8537 0.8529 0.8522
0.4333 0.8415 0.9053 0.8740 0.8407 0.8398 0.8499 0.8518 0.8513 0.8504 0.8497
0.5000 0.8406 0.9049 0.8734 0.8397 0.8388 0.8491 0.8510 0.8505 0.8496 0.8488
0.5667 0.8415 0.9053 0.8740 0.8407 0.8398 0.8499 0.8518 0.8513 0.8504 0.8497
0.6333 0.8442 0.9063 0.8756 0.8436 0.8429 0.8524 0.8542 0.8537 0.8529 0.8522
0.7000 0.8491 0.9081 0.8784 0.8487 0.8483 0.8568 0.8584 0.8579 0.8572 0.8566
0.7667 0.8564 0.9107 0.8825 0.8565 0.8565 0.8633 0.8646 0.8642 0.8636 0.8631
0.8333 0.8667 0.9144 0.8883 0.8676 0.8683 0.8725 0.8734 0.8732 0.8728 0.8724
0.9000 0.8815 0.9195 0.8963 0.8836 0.8853 0.8854 0.8858 0.8858 0.8856 0.8855
0.9667 0.9032 0.9266 0.9079 0.9070 0.9105 0.9043 0.9039 0.9041 0.9043 0.9046
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Table 6
Non-dimensional net radiative heat flux in z-direction, Q�zr, at the middle of rear, hot, wall (Y = 0.5, Z = 0.0) along x-coordinate for: isotropic scattering,
four different phase functions, four different coals and an ash predicted by Zone and Monte Carlo method (q = 0, x = 1, r = 1, jp = 0, cubical enclosure
1 � 1 � 1)

X ISO F1 F2 B1 B2 Carb. Anth. Bitu. Lign. Ash

0.0333 0.8957 0.9834 0.9690 0.8778 0.8624 0.9180 0.9248 0.9223 0.9206 0.9157
0.1000 0.8683 0.9802 0.9617 0.8421 0.8142 0.8969 0.9023 0.9008 0.8973 0.8926
0.1667 0.8480 0.9780 0.9603 0.8142 0.7832 0.8762 0.8906 0.8855 0.8812 0.8775
0.2333 0.8385 0.9760 0.9574 0.8016 0.7653 0.8699 0.8799 0.8767 0.8717 0.8695
0.3000 0.8265 0.9764 0.9573 0.7900 0.7542 0.8613 0.8758 0.8700 0.8625 0.8599
0.3667 0.8176 0.9763 0.9548 0.7854 0.7453 0.8568 0.8682 0.8641 0.8589 0.8531
0.4333 0.8143 0.9747 0.9539 0.7757 0.7378 0.8543 0.8677 0.8634 0.8583 0.8515
0.5000 0.8153 0.9761 0.9531 0.7757 0.7378 0.8527 0.8664 0.8623 0.8562 0.8477
0.5667 0.8125 0.9737 0.9537 0.7813 0.7398 0.8531 0.8696 0.8649 0.8565 0.8499
0.6333 0.8226 0.9756 0.9558 0.7860 0.7429 0.8562 0.8716 0.8629 0.8602 0.8523
0.7000 0.8229 0.9755 0.9573 0.7877 0.7523 0.8602 0.8742 0.8680 0.8617 0.8563
0.7667 0.8319 0.9763 0.9576 0.7999 0.7680 0.8689 0.8790 0.8752 0.8666 0.8615
0.8333 0.8498 0.9781 0.9593 0.8177 0.7859 0.8775 0.8913 0.8841 0.8780 0.8749
0.9000 0.8680 0.9802 0.9628 0.8376 0.8141 0.8937 0.9041 0.9016 0.8958 0.8890
0.9667 0.8991 0.9835 0.9689 0.8800 0.8611 0.9194 0.9241 0.9211 0.9195 0.9159

Table 7
Non-dimensional net radiative heat flux in z-direction, Q�zf , at the middle of front wall (Y = 0.5, Z = 1.0) along x-coordinate for: isotropic scattering, four
different phase functions, four different coals and an ash predicted by Finite Volume Method and Mie theory (q = 0, x = 1, r = 1, jp = 0, cubical
enclosure 1 � 1 � 1)

X ISO F1 F2 B1 B2 Carb. Anth. Bitu. Lign. Ash

0.0333 0.1075 0.1649 0.1538 0.0975 0.0876 0.1206 0.1247 0.1234 0.1214 0.1197
0.1000 0.1201 0.1817 0.1712 0.1086 0.0971 0.1345 0.1392 0.1378 0.1355 0.1335
0.1667 0.1307 0.1952 0.1853 0.1180 0.1053 0.1461 0.1512 0.1496 0.1471 0.1450
0.2333 0.1393 0.2060 0.1964 0.1255 0.1120 0.1554 0.1608 0.1591 0.1565 0.1542
0.3000 0.1459 0.2143 0.2049 0.1314 0.1172 0.1626 0.1682 0.1664 0.1637 0.1613
0.3667 0.1507 0.2203 0.2110 0.1357 0.1209 0.1677 0.1735 0.1717 0.1689 0.1665
0.4333 0.1536 0.2239 0.2147 0.1383 0.1232 0.1709 0.1767 0.1749 0.1720 0.1696
0.5000 0.1545 0.2251 0.2159 0.1392 0.1240 0.1719 0.1778 0.1759 0.1731 0.1706
0.5667 0.1536 0.2239 0.2147 0.1383 0.1232 0.1709 0.1767 0.1749 0.1720 0.1696
0.6333 0.1507 0.2203 0.2110 0.1357 0.1209 0.1677 0.1735 0.1717 0.1689 0.1665
0.7000 0.1459 0.2143 0.2049 0.1314 0.1172 0.1626 0.1682 0.1664 0.1637 0.1613
0.7667 0.1393 0.2060 0.1964 0.1255 0.1120 0.1554 0.1608 0.1591 0.1565 0.1542
0.8333 0.1307 0.1952 0.1853 0.1180 0.1053 0.1461 0.1512 0.1496 0.1471 0.1450
0.9000 0.1201 0.1817 0.1712 0.1086 0.0971 0.1345 0.1392 0.1378 0.1355 0.1335
0.9667 0.1075 0.1649 0.1538 0.0975 0.0876 0.1206 0.1247 0.1234 0.1214 0.1197

Table 8
Non-dimensional net radiative heat flux in z-direction, Q�zf , at the middle of front wall (Y = 0.5, Z = 1.0) along x-coordinate for: isotropic scattering, four
different phase functions, four different coals and an ash predicted by Zone and Monte Carlo method (q = 0, x = 1, r = 1, jp = 0, cubical enclosure
1 � 1 � 1)

X ISO F1 F2 B1 B2 Carb. Anth. Bitu. Lign. Ash

0.0333 0.0946 0.0630 0.0664 0.1010 0.1094 0.0877 0.0862 0.0854 0.0867 0.0895
0.1000 0.1066 0.0695 0.0724 0.1163 0.1275 0.0969 0.0941 0.0958 0.0960 0.1001
0.1667 0.1159 0.0755 0.0761 0.1308 0.1418 0.1091 0.1020 0.1046 0.1072 0.1065
0.2333 0.1250 0.0802 0.0805 0.1422 0.1537 0.1138 0.1123 0.1134 0.1146 0.1169
0.3000 0.1328 0.0846 0.0834 0.1473 0.1632 0.1226 0.1160 0.1154 0.1210 0.1239
0.3667 0.1393 0.0870 0.0866 0.1509 0.1715 0.1275 0.1197 0.1229 0.1262 0.1267
0.4333 0.1389 0.0885 0.0896 0.1565 0.1765 0.1283 0.1240 0.1232 0.1274 0.1318
0.5000 0.1431 0.0881 0.0893 0.1597 0.1752 0.1290 0.1228 0.1249 0.1269 0.1325
0.5667 0.1404 0.0886 0.0882 0.1581 0.1744 0.1287 0.1207 0.1231 0.1294 0.1295
0.6333 0.1393 0.0844 0.0843 0.1544 0.1706 0.1281 0.1210 0.1242 0.1254 0.1263
0.7000 0.1351 0.0833 0.0832 0.1480 0.1596 0.1198 0.1168 0.1191 0.1196 0.1244
0.7667 0.1268 0.0778 0.0806 0.1408 0.1566 0.1148 0.1099 0.1139 0.1165 0.1152
0.8333 0.1171 0.0749 0.0741 0.1313 0.1414 0.1070 0.1032 0.1030 0.1047 0.1091
0.9000 0.1070 0.0715 0.0724 0.1184 0.1270 0.0987 0.0942 0.0944 0.0962 0.1011
0.9667 0.0972 0.0638 0.0665 0.1027 0.1101 0.0878 0.0820 0.0836 0.0880 0.0858
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Table 9
Non-dimensional average incident radiation G* along the centerline (X = 0.5, Y = 0.5) for: isotropic scattering, four different phase functions, four
different coals and an ash predicted by Finite Volume Method and Mie theory (q = 0, x = 1, r = 1, jp = 0, cubical enclosure 1 � 1 � 1)

Z ISO F1 F2 B1 B2 Carb. Anth. Bitu. Lign. Ash

0.0333 0.5142 0.4903 0.5065 0.5125 0.5103 0.5128 0.5127 0.5127 0.5128 0.5128
0.1000 0.4333 0.4073 0.4294 0.4286 0.4235 0.4331 0.4336 0.4334 0.4331 0.4329
0.1667 0.3669 0.3426 0.3664 0.3600 0.3527 0.3677 0.3688 0.3684 0.3678 0.3673
0.2333 0.3123 0.2919 0.3150 0.3040 0.2953 0.3140 0.3155 0.3150 0.3142 0.3136
0.3000 0.2664 0.2503 0.2718 0.2572 0.2476 0.2688 0.2706 0.2700 0.2691 0.2683
0.3667 0.2273 0.2157 0.2350 0.2177 0.2077 0.2304 0.2323 0.2317 0.2306 0.2298
0.4333 0.1941 0.1866 0.2038 0.1843 0.1743 0.1976 0.1998 0.1990 0.1979 0.1970
0.5000 0.1660 0.1621 0.1772 0.1562 0.1464 0.1698 0.1720 0.1713 0.1701 0.1692
0.5667 0.1420 0.1415 0.1545 0.1325 0.1230 0.1461 0.1484 0.1476 0.1465 0.1455
0.6333 0.1216 0.1239 0.1351 0.1125 0.1035 0.1259 0.1281 0.1274 0.1262 0.1253
0.7000 0.1040 0.1090 0.1184 0.0954 0.0870 0.1085 0.1107 0.1100 0.1089 0.1079
0.7667 0.0889 0.0961 0.1039 0.0809 0.0730 0.0935 0.0956 0.0949 0.0938 0.0929
0.8333 0.0757 0.0850 0.0912 0.0683 0.0611 0.0803 0.0824 0.0817 0.0807 0.0798
0.9000 0.0639 0.0754 0.0799 0.0572 0.0507 0.0686 0.0706 0.0700 0.0690 0.0681
0.9667 0.0532 0.0668 0.0697 0.0472 0.0415 0.0579 0.0598 0.0592 0.0582 0.0574

Table 10
Non-dimensional average incident radiation G* along the centerline (X = 0.5, Y = 0.5) for: isotropic scattering, four different phase functions, four
different coals and an ash predicted by Zone and Monte Carlo method (q = 0, x = 1, r = 1, jp = 0, cubical enclosure 1 � 1 � 1)

Z ISO F1 F2 B1 B2 Carb. Anth. Bitu. Lign. Ash

0.0333 0.5515 0.4845 0.4907 0.5647 0.5788 0.5366 0.5257 0.5316 0.5368 0.5378
0.1000 0.4684 0.4214 0.4222 0.4759 0.4937 0.4571 0.4538 0.4524 0.4558 0.4591
0.1667 0.4020 0.3645 0.3667 0.4082 0.4168 0.3925 0.3867 0.3865 0.3924 0.3885
0.2333 0.3409 0.3088 0.3179 0.3443 0.3524 0.3298 0.3279 0.3274 0.3261 0.3302
0.3000 0.2869 0.2698 0.2682 0.2901 0.2916 0.2804 0.2768 0.2814 0.2795 0.2796
0.3667 0.2403 0.2279 0.2304 0.2416 0.2416 0.2363 0.2367 0.2358 0.2373 0.2371
0.4333 0.2035 0.1976 0.1945 0.2059 0.2049 0.1999 0.1987 0.1982 0.1988 0.1998
0.5000 0.1723 0.1657 0.1691 0.1714 0.1698 0.1716 0.1683 0.1683 0.1708 0.1712
0.5667 0.1423 0.1437 0.1465 0.1437 0.1412 0.1424 0.1453 0.1432 0.1454 0.1424
0.6333 0.1226 0.1268 0.1272 0.1184 0.1165 0.1218 0.1216 0.1250 0.1206 0.1222
0.7000 0.1036 0.1075 0.1131 0.1009 0.0984 0.1046 0.1052 0.1019 0.1054 0.1047
0.7667 0.0868 0.0952 0.0971 0.0847 0.0815 0.0900 0.0888 0.0893 0.0888 0.0889
0.8333 0.0712 0.0851 0.0863 0.0697 0.0662 0.0749 0.0770 0.0774 0.0769 0.0741
0.9000 0.0586 0.0751 0.0740 0.0545 0.0557 0.0636 0.0664 0.0656 0.0650 0.0648
0.9667 0.0488 0.0678 0.0676 0.0470 0.0422 0.0536 0.0543 0.0551 0.0517 0.0549

Table 11
Non-dimensional net radiative heat flux, Q�z , in z-direction along the centerline (X = 0.5, Y = 0.5) for: isotropic scattering, four different phase functions,
four different coals and an ash predicted by Finite Volume Method and Mie theory (q = 0, x = 1, r = 1, jp = 0, cubical enclosure 1 � 1 � 1)

Z ISO F1 F2 B1 B2 Carb. Anth. Bitu. Lign. Ash

0.0333 0.7661 0.8523 0.8219 0.7580 0.7491 0.7820 0.7862 0.7850 0.7829 0.7812
0.1000 0.7075 0.8162 0.7817 0.6951 0.6815 0.7292 0.7351 0.7333 0.7305 0.7281
0.1667 0.6431 0.7626 0.7290 0.6276 0.6105 0.6685 0.6755 0.6734 0.6700 0.6672
0.2333 0.5774 0.7011 0.6702 0.5598 0.5405 0.6050 0.6127 0.6104 0.6067 0.6035
0.3000 0.5138 0.6377 0.6098 0.4948 0.4742 0.5423 0.5504 0.5480 0.5441 0.5407
0.3667 0.4544 0.5760 0.5510 0.4347 0.4136 0.4830 0.4913 0.4888 0.4848 0.4813
0.4333 0.4003 0.5183 0.4957 0.3804 0.3594 0.4285 0.4367 0.4342 0.4302 0.4268
0.5000 0.3519 0.4655 0.4448 0.3323 0.3117 0.3792 0.3873 0.3848 0.3809 0.3775
0.5667 0.3092 0.4177 0.3986 0.2901 0.2701 0.3354 0.3432 0.3408 0.3370 0.3337
0.6333 0.2717 0.3750 0.3573 0.2533 0.2342 0.2967 0.3042 0.3019 0.2982 0.2951
0.7000 0.2392 0.3369 0.3204 0.2216 0.2034 0.2627 0.2699 0.2677 0.2642 0.2612
0.7667 0.2111 0.3032 0.2878 0.1943 0.1771 0.2332 0.2400 0.2379 0.2346 0.2317
0.8333 0.1870 0.2734 0.2590 0.1710 0.1548 0.2076 0.2141 0.2121 0.2090 0.2062
0.9000 0.1665 0.2470 0.2339 0.1512 0.1359 0.1857 0.1918 0.1899 0.1869 0.1843
0.9667 0.1491 0.2238 0.2121 0.1345 0.1200 0.1669 0.1727 0.1709 0.1681 0.1656
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Fig. 7. Influence of scattering albedo and of wall reflectivity on non-dimensional net radiative heat flux in z-direction, Q�z , along the centerline (X = 0.5,
Y = 0.5) predicted by FV + ME (q = 0, x = 1, r = 1, jp = 0, cubical enclosure 1 � 1 � 1) for scattering phase function F2: (a) effect of scattering albedo
on Q�z ; (b) effect of wall reflectivity on Q�z .
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backward characters respectively. All other differences
between FV + ME and ZM + MC predictions, especially
for four coals and ash, presented in other figures, are mod-
erate. Fortunately, the mineral solid fuels, i.e. the majority
of pulverized coals applied in industry as well as the ash
particles created there, under the conditions and with par-
ticles parameters used in combustion systems have the scat-
tering phase functions with moderate forward features. It
was found in Ref. [26] that scattering phase functions for
carbon, anthracite, bituminous, lignite and ash, under the
conditions considered, very little differ between themselves
and that consequently the all predictions for these four
coals and ash also very little differ between themselves. In
addition it was found within this study that the agreement
between FV + ME and ZM + MC predictions for carbon
is good and it means the same for anthracite, bituminous,
lignite and ash.

The explanation should be given for differences
between FV + ME and ZM + MC predictions appeared
in Fig. 3(b), (c) and 4(b). It can be seen in tables as well
as in figures that FV + ME predictions for phase
functions F1 and B1 compared with ZM + MC results
are closer to isotropic predictions. The reason is because
the FV + ME mathematical model does not have so effi-
cient mechanism of radiation transfer as it is the case with
Monte Carlo method that is discussed above in more
details. The FV + ME model does not transfer so effec-
tively the forward and backward features of phase func-
tions F1 and B1 respectively as it is the case with
ZM + MC methodology. Therefore the net radiative heat
flux and the average incident radiation presented by
FV + ME method have or ‘‘keep” more the isotropic
character.

In Figs. 3(a)–(d) and 4(a)–(d) can be noticed a small
asymmetry for ZM + MC results. It is known that the
Monte Carlo predictions approach and fluctuate around
the ‘‘exact” solutions as the number of emitted energy
beams is increased. In this study, in spite the fact that
50,000 energy beams were released from each volume and
surface zone and even for 100,000 energy beams, a mild
asymmetry or results fluctuation appear. The reason for
that is the ‘‘quality” of random number generator, i.e.
how much the generated random numbers are really
random.

In general, although not so accurate as Monte Carlo
method, the finite volume method is numerically elegant
and convenient for operation. Fortunately in many cases,
especially for radiation modeling in industry, FVM is suf-
ficiently accurate.

To the authors’ best knowledge the methodology based
on the link of 3-D finite volume method with Mie theory
for anisotropic scattering of particulate media has not been
developed before. In addition, the authors were not able to
find in literature any results calculated by other methods to
compare their 3-D predictions. The predictions obtained by
FV + ME and by ZM + MC and presented in all figures
and tables in this study are given, inter alia, to be compared
against the results which will be predicted with other
numerical methods. In this way these results will be
objected or confirmed.

6. Conclusions

1. A new mathematical model and computer code for radi-
ation of gray particulate media in 3-D rectangular enclo-
sures based on coupling of FVM with Mie theory is
developed. The physical and mathematical concepts of
the model are presented. To the authors’ best knowledge
this methodology was not developed before. The series
of predictions, related to net radiative heat flux and aver-
age incident radiation, were performed for: isotropic
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scattering, four different scattering phase functions as
well as for carbon, anthracite, bituminous, lignite and
ash, i.e. altogether for ten various cases.

2. The 3-D benchmark needed for comparison, obtained
previously by other methods or authors, either by exper-
iments or by modeling, is missing in literature so far.
Therefore another new model and code based on a com-
bination of Zone Method with Monte Carlo Method
were developed for generating benchmark results. With
this model and code, for the sake of comparison, the
benchmarks were calculated for the same ten cases as
it was done with FV + ME method.

3. It was found that as far as the scattering phase functions
are not very ‘‘exotic”, i.e. as far as they do not have very
strong forward or backward characters, which is not the
case for usual industrial pulverized fuels under the con-
ditions and with particles parameters used in the major-
ity of combustion systems, the developed FV + ME
mathematical model and code can be used with confi-
dence in radiation modeling.

4. If the scattering phase functions express strong forward
or backward characters, the FV + ME methodology will
give the results which will significantly differ from
‘‘exact” solution. In these cases, to obtain the better
accuracy, the ZM + MC methodology or another
method should be applied.

5. The FV + ME mathematical model and code developed
here show the following features: (i) reliably work in
very wide, i.e. in all regions of various input data which
take place within radiation and combustion problems;
(ii) give, for coals, ash and radiation modeling in indus-
try, good agreement with benchmark, i.e. sufficiently
accurate predictions; (iii) can be applied for broad
domain of particulate media needing only the particles
diameters, density of particles material and complex
index of refraction, i.e. work without the need for the
design of the approximate analytical expressions for
scattering phase functions.

6. The methodology developed and validated here can be
further advanced towards: (i) incorporation in CFD
codes, (ii) 3-D non-gray particulate media with aniso-
tropic scattering, (iii) 3-D mixtures of non-gray gases
and gray particles with anisotropic scattering, (iv) 3-D
mixtures of non-gray gases and non-gray particles with
anisotropic scattering and (v) incorporation of (ii), (iii)
and (iv) in CFD codes.
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Appendix A. The energy bundle history in absorbing,

emitting and scattering media

The cumulative distribution functions and basic equa-
tions used within Monte Carlo method, as well as the pro-
cedure related to energy bundle history are summarized
below.

For the Monte Carlo method the radiation beams are
simulated by energy bundles. A prescribed, statistically
meaningful number of energy bundles are released from
each volume and surface zone. The history of each bundle
is followed until its final point of absorption.

(1) Coordinates of the emission points
For 3-D rectangular geometry three random numbers
are generated as R1, R2 and R3 and the coordinates
of emission points x, y and z calculated by
x ¼ ði� 1ÞDxþ R1Dx ðA:1Þ
y ¼ ðj� 1ÞDy þ R2Dy ðA:2Þ
z ¼ ðk � 1ÞDzþ R3Dz ðA:3Þ
where i, j and k are indices of the zones and Dx, Dy and
Dz the dimensions of the zones. In the case of a surface
zone one of these three coordinates is fixed by the loca-
tion of that surface zone.

(2) Direction of emission
The random choices of polar angle g and planar angle
h specify the direction of the emitted bundle. Therefore
the random numbers R4, R5 and R6 are generated.
For emission from a volume zone polar angle g is cal-
culated by
cos g ¼ 1� 2R4 ðA:4Þ
For emission or reflection from a diffuse surface the
angle g is evaluated by
cos2 g ¼ 1� R5 ðA:5Þ

The planar angle for both cases, emission from a vol-
ume and from a surface zone is given by
h ¼ 2pR6 ðA:6Þ
It should be noticed that here, in Monte Carlo method,
the polar and planar angles are designated as g and h
respectively. Within Finite Volume Method, in Section
2.1.1, the polar and planar angles are designated as h
and / respectively. (Therefore angle h in Monte Carlo
calculations is planar angle, while in FVM is polar an-
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gle.) This notation is kept in this study not only from
historical reasons and because it is usual in literature,
but also to emphasize the different ways of their calcu-
lations within these two various numerical methods.

(3) Maximum distance of travel in medium
The maximal distance of travel in the absorbing med-
ium of uniform concentration of absorbing species is
L ¼ �ðln R8Þ=K ðA:7Þ
(4) Final point of absorption of the bundle
Knowing the maximal distance and direction defined
by the angles g and h, the coordinates of the final
points can be calculated from the geometrical rela-
tions. The final point of absorption can be inside, out-
side or exactly at the wall of the enclosure.If the final
point is found to be outside the enclosure, it means this
bundle must strike the wall. Another random number,
R9, is generated and compared to the surface absorp-
tivity. When this random number is grater than the
surface absorptivity, the bundle is reflected. The final
coordinates of that bundle now become its initial coor-
dinates. The direction of reflection is found by Eqs.
(A.5) and (A.6), and the bundle followed thereon. If
the random number R9 is less than the surface absorp-
tivity, the bundle is absorbed at the point and its his-
tory ends.When the final point of absorption of the
bundle is within the enclosure, another random num-
ber, R10, is generated and compared to the scattering
albedo x, of that gray gas. If the random number
R10 is grater than the scattering albedo, the bundle is
absorbed by the medium at that point and its history
ends. In the case when the random number R10 is less
than the scattering albedo, this bundle is scattered by
solid particles. The final coordinates of that bundle
now become its initial coordinates. Here the angular
distribution function f(a), should be introduced which
definition follows under (6). The next random number,
R11, is generated and the cumulative distribution func-
tion of the angular distribution function, f(a), is set
equal to R11, as follows:R a
R11 ¼ 0
f ða0Þ sin a0 da0R p

0
f ða0Þ sin a0 da0

ðA:8Þ
In such a way the scattering angle a, is evaluated. It is
assumed that the radiation is not polarized after scat-
tering. The angle between plane of incident beam
and plane of scattered beam b is evaluated by generat-
ing the next random number, R12, and using the
relation:
b ¼ 2pR12 ðA:9Þ
The direction of the scattered bundle defined by angles
a and b is in a different coordinate system. This direc-
tion is transformed into the original coordinate system
by using the relations:
cos gs ¼ cos a cos gþ sin a sin g cos b ðA:10Þ

cosðhs � hÞ ¼ cos a� cos g cos gs

sin g sin gs
ðA:11Þ
More details on these trigonometric relations and their
derivations with the pictures can be found in Ref.
[33].The scattered bundle whose direction is defined
in the original coordinate system is followed through
all scatters and reflections until its final point of
absorption.Once all the bundles have been released
and followed to their final points of absorption, the
bundles absorbed by each zone can be counted. The
required quantity is the total view factor, fij, defined
as the ratio of the number of bundles absorbed by
the zone ‘‘j” which are released from the zone ‘‘i”, to
the total number of bundles released from the zone ‘‘i”.

(5) Information on cumulative distribution functions used
Here should be mentioned that Chapter 19 of Ref. [11]
gives the definition and discussion of cumulative distri-
bution functions for Eqs. (A.1)–(A.3).
The data on other cumulative distribution functions
are as follows. If the each of Eqs. (A.4)–(A.7) is solved
for random numberRi, i.e. written in the form as it is
e.g. Eq. (A.4) as
R4 ¼
1� cos g

2
ðA:12Þ
and the same is done for Eqs. (A.5)–(A.7), then the
expressions on the right hand side for, in this way writ-
ten, all these four Eqs. (A.4)–(A.7) are the cumulative
distribution functions. They are used for the calcula-
tion of required values as g, h and L. The detailed der-
ivation and discussion of these cumulative distribution
functions are presented in Chapter 19 of Ref. [11].

(6) Definition of angular distribution function
The angular distribution function f(a), which is defined
as the fraction of the scattered energy directed into a
unit solid angle in the direction of the scattered angle
a, measured from the forward direction, is given as
f ðaÞ ¼ i1 þ i2

2px2Qsca

ðA:13Þ
It should be mentioned that the same scattering angle
is designated in this study with two different Greek let-
ters: c which comes from Mie theory notation in Eq.
(14), and a used within Monte Carlo technique in
Eqs. (A.8) and (A.13).The integration of the angular
distribution function over the total solid angle gives
Z 2p

0

Z p

0

f ðaÞ sin adadb ¼ 1:0 ðA:14Þ
One of the links between Monte Carlo method, i.e.
(A.13), and Mie theory, i.e. Eq. (14) in Section 2.1.4,
is that the angular distribution function, f(a), is given
by
f ðaÞ ¼ UðcÞ
4p

ðA:15Þ
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It is obvious that the angular distribution function is actu-
ally the scattering phase function divided by 4p.
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